NEW ELEMANOLIDES FROM ZINNIA SPECIES: STRUCTURAL REVISION OF THE ZINNOLIDES 1) Alfredo ORTEGA,* Alfonso ROMO DE VIVAR, Rubén A. TOSCANO, and Emma MALDONADO Instituto de Química de la Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México, D.F. A study of Zinnia peruviana afforded the new elemanolides zinaflorin IV and zinaflorin V. An X-ray crystallographic analysis of zinaflorin IV established its structure and stereochemistry as belonging to the rather unusual group of $C_{14\alpha}$, $H_{5\beta}$ elemanolides. The generic name zinnolides is proposed for the elemanolides possessing the same relative configuration around the six member ring as that of zinaflorin IV. In a previous study ²⁾ of 7. peruviana (syn. 7. pauciflora) we reported the structures 1a, 1b, and 1c for zinaflorins I, II, and III. These structures were revised ^{3,4)} to 2a, 2b, and 2c respectively, nevertheless some inconsistency of the proposed structures with the reported spectroscopy prompted us to undertake a new study. linnia peruviana collected in Mexico City afforded the new lactone, zinaflorin IV ($\underline{4a}$); mp 294-196°C; [α]_D+137.5 (c 0.145, CHCl₃); C₂₀H₂₄O₇ [MS: m/z 376 (M⁺), 83(100%)]; IR $\nu_{max}^{CHCl_3}$: 3410, 1770, 1705, 1645 cm⁻¹. The above mentioned and the ¹H NMR data (Table 1) are congruent with structure $\underline{4a}$. This structure differs from those reported for $\underline{3a}$ and $\underline{3b}$ (two acetals previously isolated from the same species ⁴)) in stereochemistry and in the ester attached to C₆. Dreiding models of $\underline{3a}$ and $\underline{3b}$ showed for the trans fused lactone ring a 180° dihedral angle between H₇ and H₈, which is inconsistent with the observed coupling constant (J_{7,8} = 8 Hz), consequently we are proposing for zinaflorin IV a cis fused lactone ring as that found in zinaflorins I-III ²). The observed coupling constant (4 Hz) between H_8 and H_9 requires a cis relationship, therefore the C_9 -OH must be β -oriented. This stereochemistry is opposite at C_8 and C_9 to that reported for the elemanolides $\underline{3a}$ and $\underline{3b}$, whose 1H NMR spectra are almost identical to that of zinaflorin IV (except for the signals due to the ester groups). In order to clarify this point an X-ray crystallographic analysis of this compound was carried out. The crystals belong to an orthorhombic space group $P2_12_12_1$ with unit cell constants: a=13.135 (2), b=8.263 (1), c=17.183 (3) Å, F(000)= 800, ρ calc=1.34 g cm⁻³, μ =8.04 cm⁻¹, Z=4. Intensity data were measured on a Nicolet R3m four circle diffractometer operated in the 0-20 scan mode using Cu $K\alpha$ monochromatic radiation. 1491 reflections collected up to 20 < 116° yielded 1062 observed independent reflections with I > 1.73 σ (I). The structure was solved by direct methods 5) and refined by a matrix cascade procedure with anisotropic temperature factors for the non-H-atoms and a fixed isotropic temperature factor U=0.06 $^{\circ}$ 2 for H-atoms to converge until a final R of 0.071. The hydroxilic H-atom was located from a difference F-map. The final difference map had no peaks greater than $^{\pm}$ 0.3e A⁻³. Absolute configuration was determined after 14 cycles of anomalous dispersion refinement assuming the ${\rm H}_{7\alpha}$ anantiomorph. The cis fused lactone ring was confirmed showing a dihedral angle $H_7-C_7-C_8-H_8$ of 34.9 (3)°. The perspective drawing of zinaflorin IV (Fig. 1) obtained by X-ray analysis established its structure as $\underline{4a}$, consequently the closely related lactones $\underline{3a}$ and $\underline{3b}$ should also pertain to the ${\rm H}_{5\,\beta}$, ${\rm C}_{1\,4\,\alpha}$ series and their structures must be revised to 4b and 4c, respectively. In addition to the new lactone $\underline{4a}$, $\overline{2}$. peruviana from Mexico City contains the known elemanolides zinaflorin I, zinaflorin II, 2 and epoxizinnamultifloride $8.^3$) The similarity of their published spectroscopic data with those of $\underline{4a}$ lead us to postulate the structures $\underline{5a}$, $\underline{5b}$, and $\underline{5c}$ for them, respectively. A collection of Z. peruviana from Oaxaca furnished zinaflorin I (5a), zinaflorin II ($\underline{5b}$), zinaflorin IV ($\underline{4a}$) and the new lactone zinaflorin V (6): mp 169-172°C; $C_{20}H_{24}O_6$ [MS: m/z 360 (M⁺), 83 (100%)]; IR $v_{max}^{CHCl_3}$: 3470, 1770, 1715, 1695, 1650 cm⁻¹. The above mentioned and the ¹H NMR data (Table 1) are congruent with structure $\underline{6}$. These findings and the similarity of the reported spectroscopy for all the elemanolides with γ -lactone so far isolated from Zinnia species $^{2-6}$) indicate the necessity of a revision. As the stereochemistry around the six member ring of these elemanolides is constant, we propose to name them zinnolides. TABLE 1. 1 H NMR DATA OF COMPOUNDS $\underline{4a}$ AND $\underline{6}$ (6 Multiplicity/J in Hz) (80 MHz, CDCl $_{3}$, TMS as internal standard) | | <u>4a</u> | <u>6</u> | |--------------|----------------|---------------| | 1-н | 4.1 d/5 | 5.86 dd/18;11 | | 2-H | 4.86 d/8 | 5.05 dbn/11 | | 2'-H | 3.7 dd/8;5 | 4.92 dbn/18 | | 3 - H | 5.04 d/2.5 | 6.43 s | | 3'-H | 4.58 d/2.5 | 6.07 s | | 5-H | 3.22 dbr/3 | 3.68 d/4 | | 6-H | 5.7 | 5.28 dd/4;2.5 | | 7-H | 3.32 m | 3.35 m | | 8-H | 4.92 dd/8;4 | 4.84 dd/8;4 | | 9 - H | 3.95 d/4 | 3.79 d/4 | | 13-H | 6.26 d/4 | 6.24 d/3.2 | | 13'-H | 5.75 d/3.5 | 5.7 d/3 | | 14-H | 1.28 \$ | 1.32 & | | 15-H | 5.48 s | 9.39 s | | OCOR | 6.14 qbr | 6.8 qbr | | | 2.02 dbr | 1.81 br | | | 1.82 br | | $$1a$$ R = R' = Ang $$\underline{1b}$$ R = Ang R' = H $$1c$$ R = Meacr R'= H $$2a$$ R = R' = Ang $$\underline{2b}$$ R = Ang R' = H $$\frac{3a}{3b} \quad R = \text{Tig}$$ $$\frac{4a}{3b} \quad R = \text{Meacr}$$ $$\frac{4b}{4c} \quad R = \text{Meacr}$$ $$\frac{4c}{4c} \quad R = \text{Meacr}$$ $$\frac{5a}{5b} \quad R = \text{Ang}$$ $$\frac{6}{5b} \quad R = \text{Ang} \quad R' = H$$ ## References R = Meacr R'= H 5c - 1) Contribution No. 640 of the Instituto de Química, U.N.A.M. - 2) L. Quijano, A. Ortega, T. Ríos y A. Romo de Vivar, Rev. Latinoamer. Quím., $\underline{6}$, 94 (1975). - 3) F. Bohlmann, C. Zdero, R. M. King und H. Robinson, Phytochemistry, 18, 1343 (1979). - 4) W. Herz and S. V. Govindam, Phytochemistry, 21, 2229 (1981). - 5) G. M. Sheldrick. SHELXTL Revision 3. An integrated system for solving, refining and displaying crystals structures from diffraction data. Univ. of Göttingen, Federal Republic of Germany (1981). - 6) F. Bohlmann, J. Ziesche, R. M. King, and H. Robinson, Phytochemistry, 20, 1623 (1981). (Received July 8, 1983)