NEW ELEMANOLIDES FROM ZINNIA SPECIES: STRUCTURAL REVISION OF THE ZINNOLIDES 1)

Alfredo ORTEGA,* Alfonso ROMO DE VIVAR, Rubén A. TOSCANO, and Emma MALDONADO

Instituto de Química de la Universidad Nacional Autónoma de México, Circuito Exterior,
Ciudad Universitaria, Coyoacán, 04510 México, D.F.

A study of Zinnia peruviana afforded the new elemanolides zinaflorin IV and zinaflorin V. An X-ray crystallographic analysis of zinaflorin IV established its structure and stereochemistry as belonging to the rather unusual group of $C_{14\alpha}$, $H_{5\beta}$ elemanolides.

The generic name zinnolides is proposed for the elemanolides possessing the same relative configuration around the six member ring as that of zinaflorin IV.

In a previous study ²⁾ of 7. peruviana (syn. 7. pauciflora) we reported the structures 1a, 1b, and 1c for zinaflorins I, II, and III. These structures were revised ^{3,4)} to 2a, 2b, and 2c respectively, nevertheless some inconsistency of the proposed structures with the reported spectroscopy prompted us to undertake a new study.

linnia peruviana collected in Mexico City afforded the new lactone, zinaflorin IV ($\underline{4a}$); mp 294-196°C; [α]_D+137.5 (c 0.145, CHCl₃); C₂₀H₂₄O₇ [MS: m/z 376 (M⁺), 83(100%)]; IR $\nu_{max}^{CHCl_3}$: 3410, 1770, 1705, 1645 cm⁻¹. The above mentioned and the ¹H NMR data (Table 1) are congruent with structure $\underline{4a}$. This structure differs from those reported for $\underline{3a}$ and $\underline{3b}$ (two acetals previously isolated from the same species ⁴)) in stereochemistry and in the ester attached to C₆. Dreiding models of $\underline{3a}$ and $\underline{3b}$ showed for the trans fused lactone ring a 180° dihedral angle between H₇ and H₈, which is inconsistent with the observed coupling constant (J_{7,8} = 8 Hz), consequently we are proposing for zinaflorin IV a cis fused lactone ring as that found in zinaflorins I-III ²).

The observed coupling constant (4 Hz) between H_8 and H_9 requires a cis relationship, therefore the C_9 -OH must be β -oriented. This stereochemistry is opposite at C_8 and C_9 to that reported for the elemanolides $\underline{3a}$ and $\underline{3b}$, whose 1H NMR

spectra are almost identical to that of zinaflorin IV (except for the signals due to the ester groups).

In order to clarify this point an X-ray crystallographic analysis of this compound was carried out. The crystals belong to an orthorhombic space group $P2_12_12_1$ with unit cell constants: a=13.135 (2), b=8.263 (1), c=17.183 (3) Å, F(000)= 800, ρ calc=1.34 g cm⁻³, μ =8.04 cm⁻¹, Z=4. Intensity data were measured on a Nicolet R3m four circle diffractometer operated in the 0-20 scan mode using Cu $K\alpha$ monochromatic radiation. 1491 reflections collected up to 20 < 116° yielded 1062 observed independent reflections with I > 1.73 σ (I). The structure was solved by direct methods 5) and refined by a matrix cascade procedure with anisotropic temperature factors for the non-H-atoms and a fixed isotropic temperature factor U=0.06 $^{\circ}$ 2 for H-atoms to converge until a final R of 0.071. The hydroxilic H-atom was located from a difference F-map. The final difference map had no peaks greater than $^{\pm}$ 0.3e A⁻³. Absolute configuration was determined after 14 cycles of anomalous dispersion refinement assuming the ${\rm H}_{7\alpha}$ anantiomorph. The cis fused lactone ring was confirmed showing a dihedral angle $H_7-C_7-C_8-H_8$ of 34.9 (3)°. The perspective drawing of zinaflorin IV (Fig. 1) obtained by X-ray analysis established its structure as $\underline{4a}$, consequently the closely related lactones $\underline{3a}$ and $\underline{3b}$ should also pertain to the ${\rm H}_{5\,\beta}$, ${\rm C}_{1\,4\,\alpha}$ series and their structures must be revised to 4b and 4c, respectively.

In addition to the new lactone $\underline{4a}$, $\overline{2}$. peruviana from Mexico City contains the known elemanolides zinaflorin I, zinaflorin II, 2 and epoxizinnamultifloride $8.^3$) The similarity of their published spectroscopic data with those of $\underline{4a}$ lead us to postulate the structures $\underline{5a}$, $\underline{5b}$, and $\underline{5c}$ for them, respectively.

A collection of Z. peruviana from Oaxaca furnished zinaflorin I (5a), zinaflorin II ($\underline{5b}$), zinaflorin IV ($\underline{4a}$) and the new lactone zinaflorin V (6): mp 169-172°C; $C_{20}H_{24}O_6$ [MS: m/z 360 (M⁺), 83 (100%)]; IR $v_{max}^{CHCl_3}$: 3470, 1770, 1715, 1695, 1650 cm⁻¹. The above mentioned and the ¹H NMR data (Table 1) are congruent with structure $\underline{6}$.

These findings and the similarity of the reported spectroscopy for all the elemanolides with γ -lactone so far isolated from Zinnia species $^{2-6}$) indicate the necessity of a revision. As the stereochemistry around the six member ring of these elemanolides is constant, we propose to name them zinnolides.

TABLE 1. 1 H NMR DATA OF COMPOUNDS $\underline{4a}$ AND $\underline{6}$ (6 Multiplicity/J in Hz) (80 MHz, CDCl $_{3}$, TMS as internal standard)

	<u>4a</u>	<u>6</u>
1-н	4.1 d/5	5.86 dd/18;11
2-H	4.86 d/8	5.05 dbn/11
2'-H	3.7 dd/8;5	4.92 dbn/18
3 - H	5.04 d/2.5	6.43 s
3'-H	4.58 d/2.5	6.07 s
5-H	3.22 dbr/3	3.68 d/4
6-H	5.7	5.28 dd/4;2.5
7-H	3.32 m	3.35 m
8-H	4.92 dd/8;4	4.84 dd/8;4
9 - H	3.95 d/4	3.79 d/4
13-H	6.26 d/4	6.24 d/3.2
13'-H	5.75 d/3.5	5.7 d/3
14-H	1.28 \$	1.32 &
15-H	5.48 s	9.39 s
OCOR	6.14 qbr	6.8 qbr
	2.02 dbr	1.81 br
	1.82 br	

$$1a$$
 R = R' = Ang

$$\underline{1b}$$
 R = Ang R' = H

$$1c$$
 R = Meacr R'= H

$$2a$$
 R = R' = Ang

$$\underline{2b}$$
 R = Ang R' = H

$$\frac{3a}{3b} \quad R = \text{Tig}$$

$$\frac{4a}{3b} \quad R = \text{Meacr}$$

$$\frac{4b}{4c} \quad R = \text{Meacr}$$

$$\frac{4c}{4c} \quad R = \text{Meacr}$$

$$\frac{5a}{5b} \quad R = \text{Ang}$$

$$\frac{6}{5b} \quad R = \text{Ang} \quad R' = H$$

References

R = Meacr R'= H

5c

- 1) Contribution No. 640 of the Instituto de Química, U.N.A.M.
- 2) L. Quijano, A. Ortega, T. Ríos y A. Romo de Vivar, Rev. Latinoamer. Quím., $\underline{6}$, 94 (1975).
- 3) F. Bohlmann, C. Zdero, R. M. King und H. Robinson, Phytochemistry, 18, 1343 (1979).
- 4) W. Herz and S. V. Govindam, Phytochemistry, 21, 2229 (1981).
- 5) G. M. Sheldrick. SHELXTL Revision 3. An integrated system for solving, refining and displaying crystals structures from diffraction data. Univ. of Göttingen, Federal Republic of Germany (1981).
- 6) F. Bohlmann, J. Ziesche, R. M. King, and H. Robinson, Phytochemistry, 20, 1623 (1981).

(Received July 8, 1983)